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SUMMARY

Infants born preterm or small for gestational age have elevated rates of morbidity and mortality. 

Using birth certificate records in Texas from 2002–2004 and Environmental Protection Agency air 

pollution estimates, we relate the quantile functions of birth weight and gestational age to ozone 

exposure and multiple predictors, including parental age, race, and education level. We introduce a 

semi-parametric Bayesian quantile approach that models the full quantile function rather than just 

a few quantile levels. Our multilevel quantile function model establishes relationships between 

birth weight and the predictors separately for each week of gestational age and between 

gestational age and the predictors separately across Texas Public Health Regions. We permit these 

relationships to vary nonlinearly across gestational age, spatial domain and quantile level and we 

unite them in a hierarchical model via a basis expansion on the regression coefficients that 

preserves interpretability. Very low birth weight is a primary concern, so we leverage extreme 

value theory to supplement our model in the tail of the distribution. Gestational ages are recorded 

in completed weeks of gestation (integer-valued), so we present methodology for modeling 

quantile functions of discrete response data. In a simulation study we show that pooling 

information across gestational age and quantile level substantially reduces MSE of predictor 

effects. We find that ozone is negatively associated with the lower tail of gestational age in south 

Texas and across the distribution of birth weight for high gestational ages. Our methods are 

available in the R package BSquare.

Keywords

Birth weight; Discrete; Extremes; Gestational Age; Graphics processing units; Ozone; Quantile

* luke_smith@ncsu.edu. 

Supplementary Materials
Web Appendices and Figures referenced in Sections 2.5, 3, 4.1, 4.2 and 4.3 are available with this paper at the Biometrics website on 
Wiley Online Library, as is the code for the simulation study and birth outcomes analysis.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2019 July 01.

Published in final edited form as:
Biometrics. 2015 June ; 71(2): 508–519. doi:10.1111/biom.12294.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Infants born preterm (gestational period less than 37 weeks) or small for gestational age 

(below the 10th percentile of birth weight after controlling for gestational age) have elevated 

rates of morbidity and mortality (Honein et al., 2009; Pulver et al., 2009; Garite et al., 2004). 

Reasons for these associations include poorly functioning organs, reduced metabolism, 

insulin resistance, and increased susceptibility to adverse environmental events later in life 

(Barker, 2006). Infants who are both preterm and small for gestational age (SGA) are at 

higher mortality risk than infants with either condition singly (Katz et al., 2013). Narchi et 

al. (2010) found that adjusting the conditional distribution of birth weight for biological 

variables better identified at-risk infants.

Our first scientific objective is to better define the conditional distributions of gestational age 

and birth weight by incorporating personal characteristics from Texan birth certificate 

records and environmental factors. In a paper with similar aims, Gardosi et al. (1995) used 

stepwise regression to define the conditional percentiles. We want to understand the 

relationship between the predictors and the tails of these variables, so we model the 

conditional quantile functions of the birth outcomes. In a literature review Šrám et al. (2005)

ˇ argued that the relationships between air pollution and gestational age and intrauterine 

growth warrant further analysis. Our second scientific objective is to investigate the effect of 

maternal exposure to tropospheric ozone, one of the criteria pollutants regulated under the 

Environmental Protection Agency’s Clean Air Act, on SGA and preterm birth (PTB).

Classical frequentist (Koenker and Bassett Jr, 1978; Koenker, 2005) and Bayesian (Yu and 

Moyeed, 2001) quantile regression models a conditional quantile rather than the conditional 

mean as a function of predictors. This enables inference of noncentral parts of the 

distribution, makes fewer assumptions, and is more robust to outliers than mean regression. 

With these approaches fits at multiple levels can produce “crossing quantiles,” where for 

some values of the predictors the quantile function is decreasing in quantile level. Modeling 

multiple quantile levels through constraints on the coefficients ensures monotonicity of the 

quantile function, as in Bondell et al. (2010) and references therein.

The aforementioned approaches model a finite number of quantile levels and do not share 

information across quantile level. In applications where we expect inference at proximate 

quantile levels to be similar, it is useful to encourage communication along the distribution. 

Specifying the full quantile function, which entails separate parameter effects at an 

uncountable number of quantile levels, fosters this all-encompassing approach. Recent 

examples of quantile function modeling include Reich et al. (2011), who investigated the 

effects of temperature on tropospheric ozone using Bernstein polynomials, and Tokdar and 

Kadane (2011), who analyzed birth weights using stochastic integrals. Reich and Smith 

(2013) extended quantile function methodology to censored data.

We face three methodological hurdles in our application. PTB and low birth weight are 

closely related, but distinct, concerns. Researchers prefer to define SGA infants to isolate 

effects on birth weight from those on gestational age, so it is important to allow the 

relationship between birth weight and the predictors to vary by gestational age. While 
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multilevel regression models are well-suited for jointly modeling a collection of 

distributions, standard hierarchical models assume the predictors affect only the conditional 

mean of the response. Second, considerable interest lies in the tails (particularly in very 

premature, SGA, or large-for-gestational age births), so it is important to enable the tails of 

these distributions to be affected differentially by the predictors relative to the center. 

Estimation of parameter effects at very low or very high quantiles is generally the purview of 

extreme value analysis. Multiple conditional extremal methods exist in the literature. Wang 

and Tsai (2009) modeled the tail index, which determines the thickness of the tails, through 

a linear log link function of the parameters. Wang et al. (2012) quantile regressed in the 

shallow tails and extrapolated the results into the deep tails for thickly-tailed data. Our 

application requires inference along the distribution, so we follow the approaches of Zhou et 

al. (2012) and Reich et al. (2011), who modeled the middle of the distribution 

semiparametrically and fit a parametric form above a threshold. In these applications either 

zero (Zhou et al., 2012) or one (Reich et al., 2011) covariate affected the distribution above 

the threshold. Our final methodological challenge is modeling a continuous response that 

has been discretized. The gestational age measurements take values of {25,26, ...,42}. 

Dichotomizing the response by PTB restricts inference to the cutpoint between 36 and 37 

weeks. Previous modeling of quantile functions for discretized data have either jittered the 

response (Machado and Silva, 2005; Chen and Lazar, 2010) or binned the observations, and 

then kernel-smoothed the bins (De Gooijer and Yuan, 2011).

The primary contribution of this paper is to introduce a class of multilevel quantile function 

models that overcomes these methodological challenges. The distribution of birth weight 

changes smoothly across gestational age, as shown in Figure 1.

We exploit this smoothness by jointly modeling birth weight as a dependent collection of 

distributions ordered by gestational age. The horizontal lines in Figure 1 represent the 

thresholds for low birth weight (LBW), defined as 2500 grams, and very low birth weight 

(VLBW), defined as less than 1500 grams (Rogers and Dunlop, 2006). Most infants born at 

25 weeks of gestational age are classified as VLBW, while almost no infants born at 39 

weeks and greater are VLBW, so it is imperative to control for gestational age when 

examining fetal-restricted growth.

Our multilevel approach obviates the choice between the high flexibility and low power 

associated with separate fits across gestational ages and the high power and inflexibility 

derived from one fit for all gestational ages. We illustrate another example of our multilevel 

class by spatially correlating separate distributions of gestational age for each of the eleven 

Texas Public Health Regions, which are shown in Figure 2.

In both cases we cohere the individual models via Gaussian process priors on the regression 

coefficients. This class fits separate regression parameters for different gestational ages/

spatial regions, quantile levels and predictors, creating a rich environment for parameter 

estimation.

Our second methodological contribution is a synthesis of quantile function modeling and 

conditional extreme value analysis. We adopt a semiparametric approach that models the 
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middle of the distribution as a linear combination of basis functions and parametrically fits 

the tails of the distribution via a smooth transition across the semiparametric/parametric 

threshold. This enhances tail flexibility, ensuring inference on the quantile levels of interest 

is not perturbed by a few outliers in the tails.

Our final methodological contribution is to extend the quantile function approach to 

accommodate continuous outcomes that have been discretized or interval-censored into 

groups. Gestational age from the vital records were recorded by the physician in weeks, not 

days. Rather than jittering or binning the response, we model the discretized response as a 

censored realization of a latent continuous process. By modeling the full quantile function 

we can estimate predictor effects in a computationally stable manner.

The paper is structured as follows. In Section 2 we describe the hierarchical quantile model. 

In Section 3 we present the results of a simulation study that explores our three 

methodological innovations. In Section 4 we analyze the birth outcomes and we conclude in 

Section 5.

2. Quantile Function Modeling

Denote Yi as the response (either birth weight or gestational age as described below) and Xi 

= (Xi1, ...,XiP ) as the vector of length P containing personal characteristics, environmental 

variables and intercept of infant i. We can define the model for Yi by the conditional 

distribution function F(y|Xi) = P(Yi ⩽ y|Xi) or the density f y |Xi = d
dyF y |Xi . Alternatively 

we can specify the conditional quantile function Q(τ|Xi) where Q(τ|Xi) = F−1(τ|Xi) = inf {y : 

F(y|Xi) ⩾ τ}. The value τ ∈ (0,1) is known as the quantile level and the quantile function is 

nondecreasing in the quantile level. Birth weight has been previously modeled in the 

quantile regression (Koenker and Hallock, 2001; Burgette and Reiter, 2012; Tokdar and 

Kadane, 2011), density estimation (Dunson et al., 2008) and spatial (Kammann and Wand, 

2003) settings. In this paper we borrow from all of these domains.

We begin with the class of bounded distributions, where there exist real numbers a and b 
such that for all Xi, a < Q(0|Xi) < Q(1|Xi) < b. For now we assume the density of Yi is 

absolutely continuous with respect to Lebesgue measure, implying a unique quantile 

function that is increasing in quantile level. We describe extensions to cases of unbounded 

distributions and discrete response in Sections 2.3 and 2.4 respectively.

2.1 Individual Quantile Function

In this section we introduce our semiparametric quantile regression model. The most flexible 

method would allow the predictors to nonlinearly affect the quantile function. This approach 

is promising for prediction, but the nonlinearity of the predictor effects makes inference 

challenging, so we model the parameter effects for each predictor to be linear at each 

quantile level.

We model the projection of the quantile function onto the space of cubic integrated M-

splines, known as I-splines of degree 3 (Ramsay, 1988). Let t = {t0, ...,tK} be an ordered 

sequence of knots whose minimum value is t0 = 0 and maximum value is tK = 1. In the kth 
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interval between knots tk and tk+1 I-splines of degree 3 are locally cubic polynomials, and at 

the knots I-splines are continuous and first-order differentiable. Our quantile function is

Q τ Xi = ∑
j = 1

P
Xi jβ j(τ) = ∑

j = 1

P
Xi j ∑

m = 1

M
Im(τ)θm j (1)

where I1(τ) ≡ 1, Im(τ) is the mth I-spline and θmj are the regression parameters. As the 

number of knots increases the space of polynomial splines converges to the space of 

continuous functions (Schumaker, 1981). The space of cubic monotonic splines converges to 

the space of continuous monotonic functions almost as quickly as unconstrained cubic 

splines (DeVore, 1977). A one-unit increase in Xij is associated with a βj(τ) increase in the 

τth quantile of the response. Mean regression is a special case of this model where θmj ≡ 0 

for j > 1 and m > 1. In this case the effect of the jth predictor is βj(τ) ≡ θj1 for all τ and the 

residual distribution is determined by the intercept function β1(τ).

The quantile function is increasing in τ if the derivative of the quantile function with respect 

to τ is positive. This derivative q τ |Xi = d
dτ Q τ |Xi  is known as the sparsity function (Tukey, 

1965; Parzen, 1979) and is the reciprocal of the density for any valid differentiable quantile 

function (note that F(Q(τ|Xi)|Xi) = τ and differentiate both sides with respect to τ.) 

Therefore, we can start with any valid quantile function and find its likelihood, as in Tokdar 

and Kadane (2011). In our model the sparsity function is

q τ Xi = ∑
m = 1

M
∑
j = 1

P
Xi jBm(τ)θm j (2)

where Bm(τ) = d
dτ Im(τ). This produces the likelihood

L(θ, Y) = ∏
i = 1

N
q Ui Xi

−1

where Ui = F(Yi|Xi).

Similarly to Reich and Smith (2013), we map all predictors into [−1,1] and require 

θm1 > ∑ j = 2
P θm j  for m > 1 to ensure a valid quantile process. Let τ ∈ (0,1) be arbitrary. Let 

Xij = 1 if the jth predictor has a negative effect at τ and Xij = −1 otherwise. This is the “worst 

case” combination of the predictors that minimizes the sparsity function. Then the sparsity 

function q τ |Xi = ∑m = 1
M Bm(τ)∑ j = 1

P Xi jθm j ⩾ ∑m = 1
M Bm(τ)(θm1 − ∑ j = 2

P θm j ) > 0 because 

θm1 > ∑ j = 2
P θm j . The derivative of the quantile function is positive for all τ and therefore is 

increasing in τ. Across basis function and predictor we model latent coefficients 
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θm j
⋆ ∼ind N(μm j, γm j

2 ). We let θm j = θm j
⋆  for all j if the monotonicity constraints are satisfied for 

the mth basis function and set

θm j = 0.001 j = 1
0 otherwise

if θ⋆ is outside of the constraint space. We did not have monotonicity issues in our 

application or simulation study. If the monotonicity constraints are violated, a subset of the 

predictors can be selected to exert effects solely on the location of the response.

2.2 Multilevel Quantile Model

In the birth weight application we individually relate the distribution of birth weight to the 

predictors for each of the G = 18 gestational ages. Let β jg(τ) = ∑m = 1
M θm jg be the effect of 

covariate j during week g. To spur communication across gestational ages, we jointly 

estimate these effects by using a multivariate normal prior distribution.

The quantile function at one gestational age in our global fit is of the form

Q τ Xi, GA = g = ∑
j = 1

P
Xi jβ jg(τ) = ∑

j = 1

P
Xi j ∑

m = 1

M
Im(τ)θm jg . (3)

We model these parameters collectively to gain power by borrowing information across 

gestational age. Denote θm j .
⋆  as the vector of length G of regression coefficients 

corresponding to basis function m and predictor j. We assign θm j .
⋆ ∼ MVN(μm j, γm j

−1Σm j), with 

common mean μmj, precision γmj, and correlation matrix Σmj. Similar to Section 2.1 we 

ensure the monotonocity constraints are satisfied at each gestational age.

This lower-rank representation of the individual fits reduces the variance of the regression 

coefficients. The degree of shrinkage varies across basis function and predictor. This enables 

varying degrees of similarity in regression effects by distribution location (e.g. lower tail vs. 

middle) and by covariate.

The correlation Σmj is used to capture patterns in the basis functions after shrinking them to 

a common mean. In our applications Σmj is used to smooth gestational age quantile functions 

over spatial health regions and birth weight quantile functions over gestational age. For 

gestational age we are interested in examining the distribution regionally. To capture spatial 

dependence in the quantile function we fit an exponential spatial correlation matrix, where 

Σmj[u, v] = exp{−d(u, v)/ϕmj}, d(u, v) is the distance between the centroids of public health 

regions u and v and ϕmj is the range parameter. We assign ϕmj a uniform prior with minimum 

0 and maximum equal to half the maximum distance between public health region centroids. 

This approach enables us to examine large scale spatial patterns in the relationship between 

gestational age and the predictors. For birth weight we anticipate dependence across 

gestational age, so we impose an autoregressive order 1 correlation matrix of the form 
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Σm j[u, v] = ρm j
|u − v| with correlation parameter ρmj. We give ρmj a uniform prior on the unit 

interval.

2.3 Tail Modeling

For extreme quantile levels, we employ a hybrid approach of quantile regression and 

extremal analysis. While there are lower bounds for the birth outcomes, modeling the 

quantile function of birth weight using bounded basis functions is restrictive. If any 

observations fall below Q(0|Xi) or above Q(1|Xi) the likelihood is zero, so bounded basis 

functions result in a discontinuous likelihood with respect to the parameters. Both expert 

opinion (Wilcox, 2001) and exploratory analysis suggest the density of birth weight has 

thick tails, which are best modeled using basis functions that decay slowly in the tails.

To increase the flexibility of our distribution in the tails we set thresholds τL and τH at 

extreme quantile levels (e.g. 0.01 and 0.99). We model the middle of the distribution 

semiparametrically and the values beyond the thresholds with the generalized Pareto 

distribution (GPD) family. The limiting distribution of exceedances over a threshold is the 

GPD for most distributions (Coles, 2001), providing motivation for our approach. The GPD 

has a scale parameter σ, which determines the value of the density at the threshold, and a 

shape parameter ξ, which determines the tail decay rate. The GPD can model bounded 

distributions (ξ < 0), distributions with light tails (ξ = 0) and distributions with heavy tails (ξ 
> 0). These three densities are

ζZ(z |σ, ξ) =

σ−1 1 + ξz
σ

−1/ξ − 1
𝟙0 < z < − σ /ξ ξ < 0

σ−1exp −z
σ 𝟙z > 0 ξ = 0

σ−1 1 + ξz
σ

−1/ξ − 1
𝟙z > 0 ξ > 0

where 𝟙 is the indicator function. In our application z = Q(τL|Xi)−Yi in the lower tail and z = 

Yi − Q(τH|Xi) in the upper tail. The ξ = 0 case corresponds to an exponential quantile 

function and the ξ > 0 case corresponds to a Pareto quantile function. These are good fits for 

light-tailed and heavy-tailed data respectively. This methodology was developed in Zhou et 

al. (2012) for continuous spatial data without predictors. We extend this approach to 

incorporate covariates and discrete data.

The quantile distribution Q⋆ of birth weight with a Pareto tail is

Q⋆ τ Xi =

Q τL Xi −
σL

ξL Xi
τ /τL

−ξL Xi − 1 τ < τL

Q τ Xi τL ⩽ τ ⩽ τH

Q τU Xi +
σU

ξH Xi

1 − τ
1 − τH

−ξH Xi
− 1 τH < τ .

(4)
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The scale parameters (σL, σH) are the density of the Pareto distribution evaluated at the 

thresholds (Q(τL|Xi),Q(τH|Xi)), as can be seen by plugging z = 0 into the density. Assuming 

a continuous density at the breakpoints τL and τH specifies the scale parameters as

σL Xi = τL * q τL Xi ,

σH Xi = 1 − τH ∗ q τH Xi

where q(.|Xi) is the sparsity function defined in (2). The scaling factors τL and (1 – τH) 

guarantee the full density of birth weight integrates to 1.

In the most general case we let the shape parameter be a function of the predictors. Shape 

parameters can be difficult to estimate, so we favor the simplifications ξL(Xi) = ξL and 

ξU(Xi) = ξU. We assign independent priors for the lower and upper tail shape parameters. 

Allowing the shape parameter to take on positive and negative values, as in a linear link 

function, causes instability for shape values near zero. For the individual quantile function 

model in Section 2.1 we assign log(ξL) ~ N(μL, γL), log(ξH) ~ N(μH, γH). For the collective 

quantile function model in Section 2.2 we index the shape parameters by gestational age and 

assign log ξL ∼ N μL, γL
2ΣξL , log ξH ∼ N μH, γH

2 ΣξH .

Threshold selection is a key aspect of extreme value analysis. Recall that one focus of the 

analysis is inference at the first percentile. We could have selected a lower threshold above 

0.01 (e.g.τL = 0.05) and extrapolated those effects to the first percentile. We have found that 

our model performs better when thresholds are set at or beyond the quantile levels of 

interest. If more flexibility is desired for quantile levels inside the threshold (e.g. τ = 0.02), 

then more knots can be placed at this part of the distribution. The density is monotonically 

decreasing beyond the threshold for unbounded tails, another consideration for threshold 

selection.

This meld of semiparametric and parametric approaches has several attractive properties, the 

first of which is covariate-dependent threshold selection. Permitting the predictor effects to 

change with quantile level helps properly identify the extreme values and allows the 

relationship between the predictors and the response to differ in the tail and the heart of the 

distribution. Second, a larger percentage of the data are used to inform our tails than in 

canonical extremal analysis, where observations below a threshold are often discarded. The 

scale parameter is the reciprocal of the conditional density at the threshold and is influenced 

by values above and below the threshold. In our model moving from the tail to the middle of 

the distribution attenuates the effect of the observations on the tail parameters. Antecedents 

of this idea include (Frigessi et al., 2002) and (Behrens et al., 2004), who utilized mixture 

models where a light-tailed component dominated in the bulk of the distribution and a 

Pareto-tailed component determined the density in the tail. Finally, our hierarchical 

framework enables separate tails for the distribution of birth weight for each gestational age. 

By shrinking the predictor effects independently across basis function the degree of 
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shrinkage can differ in the tails and the middle. The opportunity for communication is 

especially important in the tails, where information is often limited.

2.4 Discrete Data

Here we extend quantile function methodology to permit a discrete response. Treating an 

infant born at 36 weeks as similar to an infant born at 25 weeks yet qualitatively different 

from an infant born at 37 weeks is undesirable. Instead of dichotomizing by PTB, we model 

gestational age as interval-censored values of a continuous latent process. For a reported 

gestational age gi we model a continuous value Gi ∈ [gi, gi + 1). We find the values U1i and 

U2i such that Q(U1i|Xi) = gi and Q(U2i|Xi) = gi + 1. Note that U1i and U2i are the conditional 

CDF evaluated at the endpoints and P(gi ⩽ Gi < gi + 1|Xi) = U2i – U1i. This produces a 

likelihood of ∏i = 1
N U2i − U1i .

Unlike models that dichotomize by PTB, this approach enables parameter effects to adapt 

smoothly across the distribution. Similarly modeling the effects at adjacent weeks can help 

compensate for measurement error in gestational age, which is generally estimated using a 

combination of maternal self-report of the last menstrual period and clinician judgment 

based on interpretation of early ultrasound examinations or other factors. Modeling the 

latent continuous quantile function is most suitable for a continuous response that has been 

discretized or censored. This holds for gestational age, but may not be appropriate in other 

applications.

2.5 Computation

The computationally expensive part of our model is finding the solution Ui such that Ui = 

F(Yi|Xi) for each observation in each likelihood evaluation. The quantile function is locally a 

cubic polynomial, as it is the sum of cubic polymomials, so a closed-form solution exists for 

Ui = F(Yi|Xi). Cubic roots are numerically unstable and the solution is complicated, so we 

find Ui through Newtonian recursion, where Ut+1 = Ut + [Q(Ut|Xi) − Yi]/q(Ut|Xi) is 

computed until |Q(Ut|Xi)−Yi| is less than the error ϵ. For our application we chose ϵ = 10−5.

To our knowledge this paper presents the first Bayesian quantile function model that can 

accommodate large sample sizes and multiple predictors. For moderate sample sizes (e.g. n 

= 1000) and a small number of predictors our model runs in a few minutes. To analyze the 

birth data set, which has 565,703 observations, we used graphics processing units (Zhou et 

al., 2010). The likelihood is embarrassingly parallel, so we ran our model on a graphics 

processing unit with 400 arithmetic cores. For a likelihood evaluation of 100,000 

observations we attained a better than 20-fold improvement in computation time. With 

fourteen predictors and eleven separate quantile functions our final analysis ran in less than 

27 hours. For the simulation study and the birth outcome analyses the posterior was sampled 

using the Metropolis within Gibbs algorithm, with details described in Web Appendix A.

3. Simulation Study

Our simulation study is designed to answer three questions about our model. First, we 

compare a global fit of multiple quantile functions shrunk together by a collective prior 
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(CP), as in (3), to individual fits of the quantile functions with independent priors (IP) that 

do not communicate, as in (1). To test this we generate data at 5 gestational ages, each with 

separate covariate effects.

Yi gi = 15 + Z gi ∗ Qt Ui + Xi ∗ 0.5 ∗ Z gi ∗ Qt Ui
Ui ∼iid Unif(0, 1)

Xi ∼iid Unif( − 1, 1)

Z ∼ N5(0, Σ)

where Σ is the covariance matrix of a 5-dimensional first order autoregressive (AR-1) 

process with correlation 0.5 and unit variance. We add a scalar so the realization from this 

process has minimum 1 to ensure monotonicity of the quantile function. The base quantile 

function Qt is the Student t quantile function with 10 degrees of freedom. We selected 

Student’s t-distribution because our data are moderately thick-tailed and the Student t-

distribution enables comparison between Pareto and exponential tails, our second factor of 

interest. Finally, we are interested in the loss of information due to the discretization of a 

continuous process. For each combination of prior and tail type we evaluate one fit with 

continuous response and one fit with response rounded to the nearest integer. We compare 

these three factors for sample sizes of n = 200 and n = 400 observations for each of the 5 

levels. We ran 100 Monte Carlo replications.

To complete the CP model we assign priors μmj ~ Gaussian(0,0.001) and γmj ~ Gamma(1,1). 

For the IP model we assign Gaussian(0,0.001) priors to the parameters for the constant basis 

functions and Gaussian (μ j, γ j
−1Σ j) priors for θj = {θ2j, ...,θMj}. The correlation matrices Σj 

are AR-1 with correlation parameter ρj and are designed to capture residual correlation in 

the regression coefficients for a predictor after shrinking to a common mean. For the IP 

model we assign Gaussian(0,0.001) priors to the means μj and Gamma(1,1) priors to the 

precisions γj. We chose a lower threshold of τL = 0.01 and an upper threshold of τH = 0.99. 

We assign (on the log scale) μL and μH N(−4, 1.5) priors, where 1.5 is the standard deviation. 

On the log scale, this assigns roughly 95% of the mass to the interval (−7, −1). 

Exponentiating this interval gives the range (0.001, 0.4), which encompasses light-tailed and 

heavy-tailed distributions. For all fits we set μL = μH = −0.4 and γL = γH = 0.4. This prior 

has 95% of its mass between (0.31, 1.47), a wide range of values. We fit 5, 7, and 9 basis 

functions. For each Monte Carlo iteration we selected the fit that had the best (highest) log 

pseudo marginal likelihood (Ibrahim et al., 2005) across number of basis functions.

We compare our model regression estimates to the true regression effects β1(τ) = 0.5 ∗ 
Z(gi)∗Qt(τ) at the quantile levels τ = (0.01,0.05,0.10, ...,0.90,0.95,0.99). We fit individually 

fit frequentist quantile regression at each of the 5 gestational ages and each quantile level of 

interest. We also fit a frequentist model with linear effects for X, gestational age and an 

interaction term to enable the classical model to use all the data across gestational age. We 

show summaries of mean squared error (MSE) and coverage probabilities at the nominal 

95% level averaged across week in Figure 3 for the n = 200 case. In Figure 3 the models 

using discrete data are not visually distinguished from those using continuous data because 
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the discrete data results were very similar to the continuous data results in the best fits. This 

implies that there is little to no degradation in performance due to the weekly censoring for 

our application. For more extreme censoring, where only a few levels of the response are 

observed, this may not hold.

The first column of Figure 3 shows MSE results. For the individual fits the classical 

regression and our methods perform similarly in the middle of the distribution, but our 

method performs better in the tails. Sharing information across quantile level is most 

important in the tails, where information is sparse.

For the joint fits the classical methods (which utilize gestational age and an interaction term 

in the regression model) are slightly better in the middle of the distribution, but our method 

performs much better in the tails. The joint models all have MSE lower than their 

independent counterparts, indicating that MSE can be substantially reduced by sharing 

information across gestational age. The gains from sharing information across gestational 

age are greatest in the tails. The Pareto MSE is lower than the exponential MSE in the tails, 

as anticipated with heavy-tailed student t-distributed data. Coverage was at or above 90% for 

our methods. Coverage was above 95% for frequentist methods in the middle of the 

distribution, but dropped to 80% in the tails. All of these conclusions held for the n = 400 

case, which is presented in Web Figures 1–15.

The simulation study illustrates that fusing quantile regression and extremal inference can 

enhance inference, especially in the tails. However, the Bayesian models are more 

computationally demanding. Each simulation run took a few minutes for the Bayesian 

models and only seconds for the frequentist model. Further, frequentist quantile regression 

(which does not assume parameter effects are linear at all quantile levels) could perform 

better in other settings. Fits with 5 basis functions were found to lack flexibility and fits with 

9 basis functions suffered from overfitting in the tails, as shown in the Web Appendix B. The 

7 basis function fit was most commonly preferred by log pseudo marginal likelihood 

(LPML) for both the CP and IP models. While MSE and coverage are affected by M, LPML 

does a good job selecting the best model. In practice, we recommend fits across multiple M.

To test our model for distributions with bounded support we generated responses Yi|gi = 

20+20∗Q1(Ui)+10∗(Z(gi)+Xi)∗Z(gi)∗Q2(Ui) where Q1(Ui) is the quantile function of a 

Beta(1,5) random variable and Q2(Ui) is the quantile function of a Beta(5,1) random 

variable. Results are presented in the online appendix. Bayesian methods and frequentist 

methods again had similar MSE, except in the upper tail. The right skewness of the response 

makes inference in the upper tail more challenging, and the joint frequentist model had 

substantial trouble fitting the upper tail. Our methods suffered from undercoverage in the 

tails for the n = 200 case, but achieved near nominal coverage probability for all quantile 

levels for n = 400.
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4. Birth Outcome Analyses

4.1 Data Description and Modeling

The birth data consist of live birth certificate records in Texas from 2002 – 2004. Personal 

characteristics consisted of infant sex, maternal parity (binary for having given birth 

previously), maternal age and paternal age (less than 40 or 40 and above), maternal 

education and paternal education (did not finish high school, finished high school or finished 

some education after high school), and maternal ethnicity (white non-Hispanic, black non-

Hispanic, Hispanic, and other). All personal characteristics were treated as categorical 

variables, as in Hoffman et al. (2008a) and Hoffman et al. (2008b). Data from pregnancies 

that were missing key covariates, or ended with spontaneous fetal death or induced 

termination were discarded. We analyze viable births, those occurring in weeks 25–42 

(Morgan et al., 2008), leaving 565,703 live births.

Pollution data come from the Environmental Protection Agency’s downscaler model 

(Berrocal et al., 2010). We mapped each maternal address to the nearest 12 kilometer by 12 

kilometer grid cell centroid and summed these values for the first and second trimesters.

We fit several different versions of the hierarchical model. For gestational age we compare 

the collective model of Section 2.2 to individual fits across PHR, as in Section 2.1. We fit 

Pareto tails and exponential tails with 5 and 7 basis functions for each combination. With 

most of the births occuring during weeks 31–42, we did not feel comfortable going above 7 

basis functions for only 12 levels of gestational age. Some model runs did not converge (GA 

response, exponential tails, M = 5). Other model runs returned NA for LPML (BW response, 

exponential tails for M = 7 and 9), indicating the likelihood was computationally zero for 

some values in the tail. These model runs are omitted. For both analyses we used the same 

priors and thresholds as in the simulation study. For the range parameters ϕmj we 

implemented Uniform(0,r) priors, where r is half of the maximum distance between Texas 

PHR centroids. We spatially correlated ξL and ξH with an exponential correlation structure. 

For birth weight we compare our collective model to individual fits at each gestational age. 

Allowing the effects of the predictors on birth weight to vary by region and gestational age 

would have been computationally expensive for 14 predictors, so the predictor effects on 

birth weight are constant across region. For birth weight we fit 7, 9, and 11 basis functions. 

Example trace plots are included in Web Appendix C.

4.2 Gestational Age - Personal Characteristic Results

Table 1 shows that for gestational age the best model fit by LPML was 7 basis functions and 

Pareto tails (9 basis functions and Pareto tails for birth weight).

The effects of black non-Hispanic mothers relative to white non-Hispanic mothers on 

gestational age are presented in Figure 4.

Black non-Hispanic maternal ethnicity is associated with a more than two week decrease in 

gestational age at the first percentile, as shown in Web Appendix D. The effect diminishes 

for large quantiles and there is no significant difference for upper quantiles. This illustrates 

the ability of quantile function modeling to caputure different covariate effects on different 

Smith et al. Page 12

Biometrics. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aspects of the distribution. Other practically significant predictors included maternal parity 

and maternal education above high school, which were positively associated with gestational 

age, and maternal age above 40, which was negatively associated with gestational age in the 

lower tail. All posterior quantile plots for gestational age are available in Web Appendix D.

4.3 Birth Weight Personal Characteristic Results

Infants born to black non-Hispanic mothers weigh between 20–190 grams less than infants 

born to white non-Hispanic mothers. The effect is larger for higher gestational ages and 

change little with quantile level. Infants from black non-Hispanic mothers are at high risk for 

both PTB and SGA, but the relationship between the birth outcomes and risk of morbidity 

and mortality is subtle. While PTB is associated with negative health outcomes, previous 

research has shown that certain groups of PTB black non-Hispanic infants have better 

survival rates than PTB white non-Hispanic infants (Schieve and Handler, 1996). LBW 

black non-Hispanic infants also have lower mortality rates than their white non-Hispanic 

counterparts (Alexander et al., 2003). Given health outcome data, the methods presented in 

this paper could be used to better understand how the predictors affect morbidity and 

mortality indirectly through the birth outcomes.

While most of the effects of the predictors on gestational age are not practically significant, 

almost all of the personal characteristics substantially affect birth weight. The uncertainty in 

the posterior distribution of the regression parameters is smallest for gestational ages with 

the largest sample sizes, which occur during weeks 37–40. Uncertainty is generally higher in 

the upper tail than the lower tail. As can be seen in Figure 1, the distribution of birth weight 

is right-skewed for small gestational ages but becomes more symmetric as gestational age 

increases. This may explain why posterior variances for birth weight effects are higher in the 

upper tail than the lower tail for smaller gestational ages. We present the personal 

characteristic effects in Web Appendix D.

4.4 Ozone Results

For gestational age we permit the ozone effects to vary by region. Ozone levels are higher in 

cities, so allowing the effects to change regionally allows ozone effects to differ for urban 

and rural areas. Also, the distribution of unmeasured potential confounders may vary 

regionally, so allowing the ozone effects to vary spatially may help adjust for this.

As can be seen in Figure 5, second trimester ozone is negatively associated with gestational 

age in Texas PHRs 5, 6 and 11, located in east and south Texas.

The largest effect in absolute magnitude was 3–4 days for second trimester ozone at the 40th 

percentile in Region 11. First trimester ozone had negative effects in PHRs 5 and 11. PHRs 

2, 3, 5, and 6 showed slight negative associations in the lower tail with first trimester ozone. 

Previous research using birth records from Harris county, whose county seat is Houston and 

is located in PHR 6, found evidence that high levels of first trimester ozone increased the 

probability of PTB (Warren et al., 2012). While almost all of the ozone effects are strongest 

in the lower tail, in Public Health Region 11 the strongest effects are located around the 40th 

percentile for both first and second trimester ozone. In our sample 89% of PHR 11 is 

Hispanic, compared to 49% for Texas. PHR 11 has many migrant workers, high levels of 
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poverty and high prevalence of birth defects (Hendricks et al., 1999), so it is unsurprising we 

find that the nature of the relationship between gestational age and ozone differs here from 

the rest of Texas.

Figure 6 shows the large reduction in variance that is possible by borrowing information 

across gestational age. By modeling the full quantile function, the individual fits are 

smoother and generally have smaller variance than frequentist quantile regression. The 

Bayesian regression parameters change continuously and slowly across quantile level. In 

contrast, the frequentist effects appear choppy and have larger standard errors because they 

do not borrow information across quantile level.

We did not find a statistically significant relationship between first trimester ozone and birth 

weight. Blood exchange between the mother and the placenta increases at the beginning of 

the second trimester. The negative association between fetal growth and large levels of ozone 

in the second trimester could be due to impairment of uteroplacental blood flow, which has 

been shown to be affected by maternal smoking (Mochizuki et al., 1984).

5. Conclusions

In this paper we have presented a novel class of hierarchical quantile function models that 

retains the interpretability of quantile regression and some of the malleability of density 

estimation. Our hierarchical framework permits flexible tail inference and can model 

discretized continuous response. While our application consists only of interval censored 

data, it is easily extended to data that are left or right censored or a mixture of continuous 

and discrete responses. Our discrete quantile model could be a viable alternative to other 

applications, such as Likert scale response.

We conducted a simulation study that demonstrated substantial reductions in MSE for our 

approach relative to canonical quantile regression. We found that the lower tails of the 

distributions of gestational age and birth weight for infants born to African American 

mothers are much lower than the lower tails for infants born to white non-Hispanic mothers. 

Useful extension of our methods include variable selection for a large number of predictors, 

incorporating subject-specific random effects, and nonparametric quantile regression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots of birth weight by week of gestational age.
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Figure 2. 
Texas Public Health Regions.

Smith et al. Page 18

Biometrics. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
MSE and coverage probabilities for t-distributed response where n = 200 at each gestational 

age and M was selected by log pseudo marginal likelihood. Results above are for the 

classical frequentist estimator, spline estimator with Pareto tails, and spline estimator with 

exponential tails, titled “Freq”, “Par”, and “Exp” respectively. The maximum Monte Carlo 

standard error of MSE was 0.03 for Bayesian estimators and 0.61 for the frequentist 

estimator.
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Figure 4. 
95% credible limits for the posterior distribution of the difference in gestational age between 

black non-Hispanic and white non-Hispanic mothers by Public Health Region (PHR).
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Figure 5. 
95% credible limits for the posterior distribution of the effect of a one-unit increase in 

second trimester ozone exposure on gestational age by Public Health Region. All ozone 

values were linearly transformed into [−1,1], so a one-unit increase can be roughly thought 

of as an increase from low levels to middle levels of exposure, or middle to high.
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Figure 6. 
95% credible limits for the posterior distribution of the effect of a one-unit increase in 

second trimester ozone exposure on birth weight for gestational age of 34–42 weeks. All 

ozone values were linearly transformed into [−1,1], so a one-unit increase can be roughly 

thought of as an increase from low levels to middle levels of exposure, or middle to high. 

Light gray regions correspond to posterior credible sets for individual fits at each gestational 

age while dark gray regions correspond to the collective fit across gestational age. Dashed 

lines indicate limits of 95% frequentist confidence intervals from individual fits.
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Table 1

Log pseudo marginal likelihood (LPML) of model fits for the birth outcomes, with higher values 

corresponding to better fits. Minimum values for gestational age (−5,175,982) and birth weight (−4,094,739) 

were subtracted from the values shown below for clarity. Model types include exponential tail (Exp), Pareto 

tail (Par), and independent models for each Public Health Region and gestational age (Ind). Bolded values 

signify the best fit.

Number of Basis Functions Model Type LPML

Gestational age

5 Exp 1,751,313

5 Exp 0

7 Exp 1,869,945

7 Par 4,190,201

7 Ind 4,190,080

Birth weight

7 Par 1661

9 Par 2410

9 Ind 0

11 Exp 838

11 Par 2397
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